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Methods of bifurcation theory p] involving the elementary properties of mo~tonic rota- 
tion of the direction field are used for the quslltative investigation of a practically inte- 
resting equation. All the possible bifurcations are traced and the domain of existence 
of a double limit cycle is estimated. The equation in question has been examined by 
several authors @ -63, but this js the first complete qualitative investigation. 

Consider the system 

ntpiat = Y, dy~~=y--sincp--((1--cosIcply (0.0 

We assume that y 3 0 and h > @ (the other possible cases are reducible to this onr? 
hy substitution of variables). 

In the c#ndrical phase space (in the strip -4 < ‘p & Jz with identical edges) the 
equilibrium states are O,(arc sin y, 0) (a focus or node), and O,(n - are sin r, 0) 
(a saddle). 

The merging and disappearance of singular points is the simplest bifurcation possible 
in system (0.1). The other possible bifurcations are associated with a cfianp in the sta- 
bility of the eq~~~~ state O,, with bifurcations of saddle-to-saddle separatrices 
(this is accompanied by the appearance or disappearance of limit cycles), and with the 
appearance of Umft cycles fram a trajectory condensation, &urn the separatrix of a sad- 
dle~noda point, and from infinity. Ail of these bi!&ations are traceabie for system 
(0. I). KnowIedge of all the bifurcations makes it possible to split the parameter space 
y > 0, h > 0, d into domains with differing qualitative structures of the decompo- 
sition of the phase space into trajectories. 

1, Rotation of the ii&Id, The parameter plane h, d can be covered with 
a net of’ curves such that variation of the parameters along these curves ef&?cts mono- 
tonic rotation of the vector field of system (0. I). The difference between the direction 
fields of system (0.1) with the parameters ho and d, and of the altered system with the 
parameters &and &for y + 0 is 

AI - h, + (&&) - ?“&) cos cp 

Monotonic rotation is effected if the altered values of the parameters AX and 4 are 
chosen in such a way that ~~* - h& = 0 

This condition is satisfied if h and d are varied aiong the k-curves 

hi.3 = k, k=const (- bo <k<-+ M) 

The family of k-curves covers the entire surface hd with the exception of the axes 
h and d themselves. Contact along the straight line y = U is false. The curves of the 
initial and altered axes intersect with tangency along the q-axis. The difference between 
the direction fieids with variation of the parameter y is (yr - ys) / f#. As y varies. 
the direction field on the lower and upper half-cylinders rotates in opposite directions. 
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Qualitative study of a certain equation of the theory of phase aft 813 

The straight line y = 0 in this case is the contact curve. 

2, Sprouting of l cycle out of (L focus. The equilibrium state Otis a 
complex focus for the points of the surface 

61= (Pq’ + &‘)t = 1c (d 61 - 7’ - 1) = 0 

On passing through the surface crl = 0 in the direction of increasing it. the stable 

focus becomes unstable and sprouts into a single stable limit cycle (the first Liapunov 

parameter for the points of the surface or = 0 has the value a;,= --‘/sarA (I- v)qd< 

< 0). 
3. Qurlltrtivr ntructur6a at the “end:” of k-curve,. Inorder to 

trace the variation of the qualitative structure of the phase space and the possible bifur- 
cations with monotonic rotation of the field with parameter variation along the k,-curves 
we must know the structures of the phase space decomposition at the ends of the k-curves 
for small and large h (and, correspondingly, for large and small (E). Let us represent( 0.1) 

in the form &/+sincp&= [~-n(1-dcoscp)yldqJ (3.1) 

From (3.1) we infer that 
[r--(1 s 

-dcos&/Jd~=O 
e 

if c is limit cycle (3.1). For small y and I the limit cycle girding the cylinder is close 

to one of the curves 17, 11 
y,= i:P(coacp+N (i<fi< m) 

which are the solution of Eq. (3.1) for y = 31 = 0. The value h = 1 corresponds to a 
saddle-to-saddle separatix. The values of the constant h which isolates the curves of 
the conservative system near which system (0.1) has limit cycles for small y and h on 

the upper and lower half-cylinders are, respectively, the roots of the equations 

111* (It) = 0, 9s* (h) = 0 (h,i), ks = +j (3.2) 

~t.(h)=%[7--h(1--dcos9)y,Jdp= 

= 2rq f h [$ - g (2 (x2 - 1) P + (2 - xy El} = $1.2 (x) 

Here F and E are total elliptic integrals of the first and second kind ; the upper sign 
applied to vl,the lower sign to &.The limit cycle corresponding to the root x = xr, 
is stable if ys&,s’ (~0) > 0. 

The definitions of the functions 91,s are supplemented for x = 1 by their limiting 

values ipr (1) = &t*: j- s/sh (d - 3) and 9s (1) = 2ny - */& (n - 3). From 
(3.2) we infer that 91 (0) = - 00~9s (0) = i- co for all d , and also that for d>O 
the derivative $1.2’ does not change sign in the interval 0 < x < 1 (Appendix 1). 
From this we immediately infer that if the condition 

$1 (1) = 2xy + */&(d - 3) > 0 (3.3) 
is satisfied for d > 0 then there is a unique stable limit cycle which lies on the upper 
half-cylinder, and that if the condition 

98 (0 = 2ny - */sn (d - 3) < 0 (3.4) 

is satisfied. then a unique stable limit cycle lies on the lower half-cylinder. Fulfillment 
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of (3.4) implies fulfillment of (3.3). The requirement that the right side of (3.1) be 
small [y < e, h’< 8, L 1 d I< e] isolates in the plane ad a domain unbounded in d 
which is adjacent*to the axis X e 0 and contains the curves $1 (1) = 0 and 9s (1) = 
= 0. The equation 9, (1) = 0 for a small y in the plane of (nonsmall) parameters 
h, d yields, as h --t 0, the asymptotic form of the curve which isolates the domain of 

the parameter plane for whose points in the phase space of system (0.1) there exists a 
stable limit cycle on both the lower and upper half-cylinders. In this case d > 0 and 
the equilibrium state O1 is unstabk. The qualitative structure of the phase space in this 
domain appears in Fig, 2 (1). 

Note, The qualitative picture which appears in Fig. 2 (I) is not completely defined 
by the indicated information, i.e. it is defined to within an even number of limit cycles 
which possibly surround the equilibrium state. It is not difficult to extend this informa- 
tion by constructing the function qs and noting (as with rps and 9,) that for small 1’ and 
b a (unique) limit cycle can exist only around a stable focus. This means that the qua- 
litative picture in Fig. 2(1) is exact. But the extension of information is pointkss in 
these circumstances, as bifurcation analysis for nonsmalf ‘y and h. does not serve to eli- 
minate the incompleteness anyway. 

Let us trace the behavior of the a- and o-separatrices of the saddle on the upper 
half-cylinder for large h, 0 < 1 d 1 < 1 and 0 -5 y < 1. If the o-separatrix of the 
saddle enters the domain above the y,a, = (1 + y) / (1 - jdl)h of the horizontal 
slope isoclines, then, clearly, limit cycles which gird the cylinder cannot exist. Such 
parameter values can be chosen for large h. The directions along which the trajectories 
of system (0.1) enter the saddle 0, am defined by the equation 

I;a+h(l+dT/1-~2)~-~~=0 

For 0 < .T & 1 one root is always negative and corresponds to the direction along 
which the o-scparatrix enters the saddle. Suppose that the coordinate r),of the point 
of intersection of the straight line with the o-separaaix of the saddle has been marked 
on some straight line go = “p. . As we move along the k-curves in the parameter space 
with growing A, then the vector field rotates monotonically clockwise, and the coordi- 
nate rlo on the straight line ‘p = (ps grows while the maximum of the isocline dimini- 
shes. Hence, we can always choose X and d in such a way that the inequaliity 
(1 + y) / h (1 - 1 d 1) < q. is satisfied. 

Limit cycles a+b cannot exist on the bwet half-cylinder for the indicated parameter 
values. since the existence of a closed contour consisting of the trajectories of system 
(0.1) on the lower half-cylinder means that 

n 

c [r - h (1 - dcosrp)y]dq=O 
-‘x 

But this is not possible ‘for y (9) < 0, ) d 1 < 1 and positive h and Y. For d < 1 
the equilibrium state 0, is either an unstable focus or a node. Limit cycles cannot 
exist around the equilibrium state for IdI < 1, since in this case 

P’,f Q’,=--(I-dcoscp)+O. 
The qualitative picture of the phase space for sufficiently large h on any Curve u = k 
is shown in Fig. 2 (6). 

4. Qualitative pfctutur of rho pharr nprce rnd poorlblr bifur- 
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crtions for 1mrl1 y. Let us consider the case d > 0. The conditiongS (1) 3 
S 2ny - */*A (d - 3) = 0 for small y and A, yields in the plane ti the asympto- 

tic expression of the curve which isolates the domain of the parameter plane correspond- 

ing to the qualitative structure shown in Fig. 2 (J). For .k C ‘/py the curves do not 
enter the domain defined by condition (3.4). For k > ‘/$~4) there exist k-curves which 
belong partly to the domain defined by the requirement of smallness of the quantities 

y, 3L and 3cd and connecting the domains of the parameter space which correspond to 

the structures of the phase space decomposition shown in Fig. 2 (I, 6). 

By observing the appearance of limit cycles at infinity for small y and h, we find 

that every k-curve which does not belong to the domain hd < 8 also connects the 
domains of the parameter space corresponding to the phase space.structures of Fig. 2 

(I, 6) (Appendix 2). Variation of the parameters h and d along the k-curves effects 
monotonic rotation of the vector field. 

Let us consider the associated behavior of the saddle separaaices. For the structure 

of the phase decomposition shown in Fig. 2 (I) we note the points of intersection of the 

straight line cp = ‘p,, passing through the point Orwith the CL- and o-separatrices which 

lie closest to the saddle: P, on the o-separatrix on the lower half-cylinder, P, on the 

a-separatrix on the lower half-cylinder, P, on the o-separatrix on the upper half- 

cylinder, Pp on the a-separatrix on the upper half-cylinder, and P,, which is the second 
point of intersection on the cz-separatrix travelling towards the equilibrium state 0, 

$1 (Fig. 1). As k grows along the kdcurves the direction 
field rotates clockwise and the points Prand P, rise mo- 

notonically, while the points P,, P, , Ps descend mono- 

tonically. The possible bifurcations correspond to the 

merging of the points Psand P, and (after this has occur- 

red) of the points P, and P,, and also of the points PI and 

p Ps. These bifurcations do, in fact, occur, since increases 
in h along the k-curves are accompanied by a transition 

from the structure shown as Fig. 2 (I) to the structure 
shown in Fig. 2 (6), and with a change in the signs of 

‘9 m-5 ‘s$s ‘9’$ the coordinates y, - y, and y, - y, (the subscripts 

are the same as those of the points). 

Fig. 1 The sets of points on the plane ti for which the points 
P, and P, (a separatrix loop exists below). Ps and P, 

(a loop exists around the point Or), or P, and P,( a loop exists above) coincide, these 
sets of points form the bifurcation curves L’, LO and L+ which decompose the plane 
hd into domains in which the qualitative structures differ in the behavior of the sad- 
dle separatrices. 

The behavior of the separatrices determines the structure of the decomposition of the 

phase space into trajectories to within an even number of limit cycles. 

The equation &(l)=O yields the asymptotic expression for the L+-curve for small 
Y and 3L ; the L.-- curve (that part of it which corresponds to d > 0) begins at the aas 

d =O(for d= 0 and for small and large h we have the structure of Fig. 2 (4, 6); 
as h increases the field rotates monotonically, so that there exists a unique bifurcation 
value corresponding to a point of the L+-curve). 

The curve Lo lies between L- and L+. For small y and X the curve LO is represented 
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by the equation d = 3 (Appendix 3). The curves I,-, LO and L+ intersect each of the 
k -curves at a single pint and then go out to infinity. They cannot inters&t, since for 
y > 0 and all X and d there exists no trajectory decomposition structure for which the 
saddle separatrices form two loops in the lower and upper half~y~nde~ (such a structure 
would be associated with a point at which the three curves L’, L” and L+ intersect), 

Fig. 2 

If we suppose that su&h a suuczure does exist for some y > 0 , then as y decreases, 
the monotonousness of rotation of the vector field on the upper and lower half-cylinders 
(clockwise and counter-clockwise, respectively) results in the destruction of both loops 
and in the appearance of a structure in which the CMeparatrix lies below the o-sepa- 
ratrix on the lower and upper half-cylinders. Only with such a diaposirion of the separat- 
rices can there arise a double loop formed by the saddle separatrices with increasing y . 

For y = 0 and any 1 and & such a disposition of the separatrices is impossible because 
of the symmetry of the direction field with respect to the origin ; nor can it arise with 
increasing y , since the different directions of the field rotation on the lower and upper 
half-cylinders with increasing Y the points of the or-sepauraices on each haifa~linde~ 
can only rise, and the points of the o -separatrices can oniy descend. 

From what we have said it follows that as h increases along the k-curves ConneCting 
the structures shown in Fig. 2 (I, 6) (k > “Is 3%~) there arises a sequence of bffurcations 
for which the first points to merge are P, and PI, &en P, and P, , and finally P t and 
P,. The curves L* and 6, t () intersect (this follows from the asymptotic representa- 
tion of the L*-curve by the equation I#~ (1) 5= 0) , so that the contraction of the limit 
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cycle to a point with motion along the k-curves (upon crossing of the line GI -1: 0) 
can either precede contraction of the limit cycle to the separatrix loop (upon crossing 
of the curve L+) or follow it. The curve&‘does not intersect the straight line 01 = 0 
on which the stability of the focus changes, on the segment between the d-axis and the 
I.,+-curve (intersection is impossible for y = 0 since P,’ + Q,,’ does not change 

sign on u, = 0, and is therefore impossible for small r). 
The sequence of qualitative structures which arise with the indicated variation of 

parameters is depicted in Fig. 2 in the form of two possible sequences of coarse S~IUC- 

tures: (j-4, 6) or (Z-3, 5,6 ). The noncoarse structures corresponding to the bifur- 
cation parameter values are denoted by two figures indicating the coarse structures which 

they separate (see Fig, 2). with motion along the k,-curves (0 < k, < 8jgcy) struc- 
ture (I) drops out of the sequence (the kl-curves do not intersect the curve 9s (1) = 0). 

Let us turn to the case d ( 0. Condition (3.3) isolates from the plane ?,d the domain 
for whose points the phase space of system (0.1) contains a stable limit cycle on the 

upper half-cylinder. The equilibrium state 0, is stable for d < 0 . The qualitative 
structure of the phase space in this domain is shown in Fig. 2 (4). The curves k (for 

-%w < k < 0) connect the domains of the parameter space which correspond to 
the structures shown in Fig. 2 (4,6). As b increases along the k-curves the points P, 
and Pa on the cz- and o-separatrices of the saddle on the upper half-cylinder (Fig. 1) 
converge monotonically, merge for some h. = &, (k) (for d = 4 (k),respectively), 

and then diverge monotonically. The set of points h, (k), ds (k) corresponding to the 
noncoarse bifurcation structure for which the a- and o-separatrices of the saddle on 

the upper half-cylinder form a continuous curve which is the extension of theL+-curve 
into the domain d ( 0. One of the kdcurves ~-s/~~~ ( k < 0) passes through every 

point of L+. 
The saddle parameter o,, = (P,’ + Q,,‘)a 3 - 2, f3 + d l/l- changes sign 

at the straight line 1 + d 1/w = 0 in the parameter plane h, d . This straight 
line has just one point of intersection with the L+-curve (since L+ cannot have more 

than one point of intersection with the k-curves). 
There exists a unique value k = k;l which splits.the k-curves into two classes: the 

kr-curves (k, ( kI ( 0) which intersect L+ for 0s < 0 and the %-curves 

(-a/4~y < $ ( ka) which intersect L+ for CT, > 0. For small h we obtain the struc- 
ture shown in Fig. 2 (4). As h increases along the ‘kr-curves the limit cycle descends, 
and the separatrices on the upper half-cylinder converge. 

On the passage through the value of h corresponding to the intersection of the curves 
kl and L+ we note the appearance and disintegration of the separatrix loop on the upper 
half-cylinder to which the stable limit cycle converges (since the saddle parameter 
0, < 0). There is no change in the qualitative structure with further variation of the 

parameters along the kl-curves. The sequence of qualitative structures as X increases 
along the kpxrves is shown in Fig. 2 (d), 2 (d-6), 2 (6). 

As h increases along the ks-curves, the limit cycle descends and the separatrices on 

the upper half-cylinder converge; however, on passage through the value of 1 corre- 
sponding to the intersection of the curves k, and L+ the disintegration of the separamx 
loop is accompanied by the appearance of an unstable limit cycle on the upper half- 
cylinder (the stable limit cycle cannot converge to a separatrix loop, since the saddle 
parameter os > 0) and we have the structure shown in Fig. 2 (7’) with two limit cycles 
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girding the upper half-cylinder. 
With further increases in the parameter S along the ks-curves the limit cycles con- 

verge monotonically. Since there are no limit cycles for the structure in Fig. 2 Is) , it 
follows that every Er;-curve has a point with the coordinates h++ (k), d++ (k) for which 
the stable and unstable limit cycles merge into a semistable limit cycle. The correspond- 
ing noncoarse bifurcation structure is shown in Fig. 2 (7 - 6). The set of points h++ (k), 
d++ (k) forms the continuous L++.-curve which intersects each of the kg-curves at a 
single point to the right of the %G -curve and begins at the point of intersection of the 

Fig. 3 

L+ -curve with the straight line us = 0 (Fig. 3). The 
sequence of qualitative structures as h increases aiong 
the k,-curves is shown in Fig. .z (4), 2 (4-7), 2 (7), 
2 (7-G) and -% (6). 

The curves k, (4 <- 3/qa’GY) do not intersect the 
L+-curve (and therefere the L**-curve). Hence, the 
L++- curve has the same asymptotic expression as the 
L+-curve for Iarge 1 d 1. On the k,- arves the structure 
of the phase space is equivalent to that shown in Fig.2 

(6). 
The decomposition of the parameter space h, d for 

small y is shown in Fig, 3 ; the nurn~rs~~-?~ identify 
the various domnins in the parameter space correspond- 
ing to the coarse structures in the p&e space marked 
with the same numbers in Fig. 2. The noncoarse struc- 
tures marked with two numbers in Fig. 2 correspond to 
the bifurcation curves in Fig. 3 which separate the cor- 
responding domains. 

6, Thr brhrtiot of ths bifuru4ti~~ OUIYII with rrrprct to y+ 
Othrr porriblr bifutcattanr, Let LIS trace the changes in the phase space and 
in the behavior of the bifurcation curves on passage from small positive values of y to 
nonsmall values in the range 0 & y .& 1. As y increases the equilibrium states 0, and 
0, converge. The direction field on the lower and upper half-cylinders rotates monoto- 
nically clockwise and counterclockwise,respectively ; the stable limit cycles on the 
upper and lower half-cylinders rise accordingly. If a stable limit cycle on the upper 
limit cycle exists for some yo, then it exists for all y > yo. If for some y. there is a 
loop on the lower and upper haif-adds, then as y increases,the lower loop disinte- 
grates without the appearance of a limit cycle, while the upper loop disintegrates with 
the appearance of a stable limit cycle. As y increases the points of the L--curve sepa- 
rating domains ( 1 and 8 ) in Fig. 2 become interior points of domain (2) as y increases. 
AS y increases, the points of the Lr- curve become interior points of domains ( 3 and 4 ), 
and the points of the L ++-curve become interior points of domains (d and 7) (or belong 
to their boundary). The curve L++ 
me straight line 1 + djfl - y2 

which begins at the point of intersection of L+ with 
= 0 does not exist above the straight Iinu (the hypo- 

thesis of the existence of such points implies the existence of two values yl and y. of the 
points of intersection of the curves L*+ (yJ and L*+ (yo), which is impossible because 
of the monotonicity of rotation of the field on the half-cylinder with monotonic varfa- 
tion of y), so that the condition 1 + dfm < 0 serves as an estimate of the 
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domain of existence of a decomposition structure of the phase cylinder with two limit 
cycles on the upper half-cylinder, as shown in Fig 2 (7). Domain (7) of the parameter 

space corresponding to the structure in Fig. 2 (7) descends with increasing y . 

As y increases to the value y = 1 the equilibrium states 0, and 0, merge to form a 

special complex saddle-node point, while domains ( I-3, 5 and 7) in Fig. 3 go out to 

infinity. The only bifurcation curve on the plane ti is the’ L+ -curve (its existence 
follows from considerations similar to those adduced in the case of small $ and based 

on the existence for Y = 1 of a certain neighborhood of the d-axis for whose points a 

stable limit cycle exists on the upper half-cylinder). The parameter space and the decom- 

position Wuctures of the phase space are shown in Fig. 4. 
4.4 

Fig. 4 Fig. 5 

For y > 1 there exists a single structure of the decomposition of the phase space 

into trajectories. All of the trajectories wind around a stable limit cycle on the upper 
half-cyclinder(Fig.5). As y increases from the value y = 1 for h and d taken from 

domain (I) in Fig.4 the saddle-node equilibrium state vanishes. For values of 31, and d 
taken from domain (2) a stable limit cycle arises out of the a-separatrix of the saddle- 

node. 

For y = U the phase space is symmetric with respect to the origin. The equilibrium 

states are 0, (0, 0) and 0, (0, f n). The existence of a separatrix loop on the upper 
half-cylinder implies the existence of such a loop on the lower half-cylinder. Such a 

double loop also forms a closed contour about the equilibrium state 0,. This means that 

the curves L-, L” and L+ coinside. As y --t 0 the curves L- and L+ converge and merge 
with the d-axis and the Lo-curve for y = 0. The points of the L++-curve become inte- 

rior points of the domain (6) as y decreases. Domain (7)cannot be preserved for y = 0, 
since this would mean that four cycles would exist even for sufficiently small y . AS y + 0 
the L++-curve is “engulfed” by the half-line 3L = 0, d < - 1. For y = 0 the parameter 

plane h, d has a single bifurcational L-curve which arises from the merging of the curves 

L-, L”and L+. The curve L begins at the point 3\. =O. d =3 and goes out to infinity. It can 

intersect neither thestraight line d =l (since P,‘+Q,’ = - h (1 - d cm cp) does not 
change sign for 1 d 1 f 1) nor the straight line a = 0 (since it cannot intersect the 
b-curves at more than one point). cm passage through an L-curve along the k-curves 

with increasing 3, and with the appearance of a double loop, the stable limit cycle con- 
tracts to each half-loop (since the saddle parameter (PQ’ $ Q ;‘), = - h (1 + d) 
is negative, and since the vector field rotates clockwise). With further changes in 3\. and 
disintegration of the loop, the double loop considered as a closed contour surrounding 
the equilibrium state O1 gives rise to a stable limit cycle which surrounds this equilib- 
rium state. The limit cycle contracts to a point for d = 1 and the focus becomes 
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stable. The parameter space and the phase space decomposition structures for y = 0 
are shown in Fig. 6. 

Fig. 6 

Appendix 1. a) Making use of the expansions 

F +1+++-& %a+...), ES+i-+-&X’-...) 

we find that the following rektion hold for small 5c : 

$,a w= w r A 
i 

+ - -+C+.. .)s7: G 

so that &(O) = - 03, *s(O) = + CO. 
b) From (3.2) we obtain 

$;,B W = =F 314 
[ 

- -$- - $- (D (x) ] s CD (x) = (2 - X2) F - 2E 

The expression Ui(x) is always positive for x # 0 , so that for d > 0 we have 

In fact, 
pgn (p/1,2 (x) = sgn (f A) 

(0’ (x1 = -& I 
E - (1 - XP) P 1 m * @l (ic), @l'(X) =xP > 0 

since a,(o) = 0 and @‘r(x) > 0,it follows that (P&C) > 0 (and W(X) > 0). 
But since ~(0) = 0 and W(X) > 0, it foilows that Q(x) > 0. 
Appendix 2, To investigate the behavior of trajectories for large f/ > 0 we set 

Y = i / p..system (0. I) then becomes the system 

dg 1 
-z-p* * =P(a-kcoecp)+pr(sin~ -7) 

or the equation 
~lp’(h-keosp)+p”(siap--r) (A) 

where P and I$J can he regarded as ordinary polar coordinates on a plane perpendicular 
to the axis of the phase cylinder. The sedition y = 1 I P transforms spirals g$ding 
cylinder into spirals girding the equilibrium state at the point P =O. The solution of 
Eq. (A) defined by the initial condition P = p8 > 0 for cp =i 0 can be sought in the form 
of the series P = POW0 + po’“lls(q?) + PQ%(cp) + P&(~cp) +..- 

which converges for all cp,in the range -XX < tp < E and for all sufficiently small values 
of PO. Determining the functions U&I) s 1, y(g), . . . successively from the recursion 
equations using standard methods, and then setting ip = Z&, we find the succession func- 
tion on the segment Q, = 0 . The equation 



Qualirative study of a certain equation of the theory of phase aft 821 

P1 - PO = po%+(fn) + ~S~*(Z~~ + ~4U‘(2~) + ..* z PO” Q2nh + I(2xh)* - 2WlPo + 

+ I(2W - 23&(5ny + 1) - kn] pCe + . ..3 = 0 

for r = 0 and small h (for any k > 0) has a positive root corresponding to the stable 
limit cycle on the upper phase half-cylinder. For Y =O, by virtue of thesymmetry of the 
phase space trajectories(of the strip --n B 91 Q x) with respect to the origin, the lower 
half-cylinder also contains a symmetrically situated limit cycle. Both limit cycles are 
preserved for small Y. For small y and E, and any k > s/d ny we have the decomposition 
structure of the phase cylinder shown in Fig, 2(z), 

Appendix 3. The values of the constant ir which isolate the curves of the con- 
servative system near which limit cycles surrounding the equilibrium state exist for small 
y and h are the roots of the equation 

9s” (h) = s [r-_((1--dcos(P)y]dp =o 
c 

where c is one of the curves y2 = 2(cos ‘p + h) for .- i < h < 1. Since 

ti* (A) =E - 26-2-n Y(1 - d co9 ‘P) (coa ~1+ h)“~d~ foes rp, + h = 01 
-rp* 

so that the roots of the equation +*(h) = 0 do not depend on y and 1, it follows that 
the domain of the plane hd for which there is a limit cycle surrounding the equilibrium 
state is bounded by the straight line d = d; (to within terms of order P if we set r= Pyo 
and h- p&,).The value of d, can be readily determined in the limiting case h = 1 

(the closed contour consists of two saddle-to-saddle separauices). Hence, dr = 3, 
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